
Practical Exploitation
of

Modern Wireless Devices

Thorsten Schroeder

ths@dreamlab.net

Max Moser

max.moser@dreamlab.net

Warning!

 Verifying the security of someone else's data

transmission or injecting stuff without permission

could send you (or the other guy) to jail in most

countries :-)

What is this talk all about?

 Brief History

 Nordic Semiconductor Radio

 Practical Exploitation of…

 … other Mobile Devices

 Demo & Release – Remote Code Execution

History

Evolution

 Infrared (Not part of this talk)

 27 MHz Radio

 Bluetooth 2.4 GHz Radio

 Proprietary 2.4 GHz Radio

What is it?

 27 MHz frequency band (Citizen Band)

 Miller encoded radio signal

 Proprietary protocols

 Approx. 90 cm guaranteed max. working distance

 Low cost

 Battery demanding

What is wrong?

 Pure one way communication

 “Encryption” absent or only optionally available

 No protection against replay attacks

 No (Message) Authentication

Logitech Packets (27MHz)

a(down)

Keyb 1
000000100 10001001001 0000011110 1 00000

a(down)

Keyb 2
000000100 100111001111 0000011110 1 0001000

a(up)

Keyb 1
000000100 10001001001 0000011110 0 00000

a(up)

Keyb 2
000000100 100111001111 0000011110 0 0001000

b(down)

Keyb 1
000000100 10001001001 0000000101 1 0101

b(down)

Keyb 2
000000100 100111001111 0000000101 1 0100000

b(up)

Keyb 1
000000100 10001001001 0000000101 0 0101

b(up)

Keyb 2
000000100 100111001111 0000000101 0 0100000

? Keyboard ID Keystroke State ?

Tools Anyone?

 Radio transceiver + Taperecorder == replay

 Two identical receiver + Sync == FAIL

 Sniffing => Keykeriki V1

Keykeriki V1

 Released in May 2009 at PH-Neutral

 Capable of sniffing Microsoft, Siemens-Fujitsu,

Logitech, …

 SDCard for persistent Storage of data

 On-the-Fly Crypto Analysis /Cracking

Attack Limitation

 Full wavelength of 27 MHz is about 11 meters

huge antennas

 Error correction not part of the design & not

implemented. Therefore limited range

 Injection is limited to replay because some minor bits

are still unknown within the packet format

Bluetooth Keyboards

What is it?

 Popular transmission technique in mobile area

 Security features are implemented within firmware

and not directly accessible from operating system

 Pairing process

 Encryption / Key exchange

 Fast frequency hopping makes sniffing more difficult

What is wrong?

 Bluetooth transmission modules are expensive ⇒
Expensive keyboards

 During pairing process all pre-requirements for a

successful PIN-cracking can be sniffed - “Simple

Pairing” should fix this

 Buggy implementations (Complexity)

 Overdesigned

Tools Anyone?

 GnuRadio

 Frontline FTE4BS™

 Flashing old Frontline FW on CSR Bluecore 3

dongles

Attack Limitation

 Sniffing is possible but kind of “unstable”

 All pre-requirements for a successful PIN-cracking

can only be sniffed during pairing

 Complex documentation

 GnuRadio or FTE4BS™ are expensive

 Rarely used

Proprietary 2.4 GHz

based Keyboards

What is it?

 Not Bluetooth, not Zigbee, not 802.11xyz

 Most devices operating with1 Mbit/sec some at

rates up to 2 Mbit/sec

 Nordic Semiconductor NRF24XXX family widely

used

 Compact form factor (e.g. 2.4 GHz antenna, small

IC devices, …)

 Faster, less TX time less power consumption

Vendor Specific Responsibilities

 Any radio based keyboard vendor is responsible

for:

 Computer System Protection

 Authentication

 Data Protection & Integrity

 USB receiver is single line of defense (in case of

keyboards for example)

Proprietary 2.4 GHz

based Devices

Nordic Semi NRF24xxx

(Source: Nordic Semiconductor)

Enhanced Shockburst™

 How does it work?

 Nordic Multiceiver concept

 Multiple RX data pipes

 One channel at a time

 Dynamic Payload Len

Preamble

1 Byte

Address

3-5 Byte

Packet

Control

Field

9 bit

Payload

0-32 Byte

CRC

1-2

Byte

Packet Control Field

6 bit Payload Length

2 bit Sequence / Packet ID

1 bit Disable Auto ACK

Raw Shockburst Processing

 Difficulties

 Speed (2 Mbit/s is fast!)

 Auto-Ack and Retransmission Features vs.1 Mbit

solutions

 Direct Baseband Signal Access / Interface

How NRF24xxx works

 Detect valid Enhanced Shockburst Frame:

 8 bit preamble (0xAA or 0x55)

 3-5 byte device address

 CRC (if enabled) must match

 Otherwise it is considered being noise

NRF24L01+ Interface

 Config and Data Transmission via SPI (Serial

Peripheral Interface) using FIFO buffers

 There is no way to access radio layer directly

 Target system„s device address must be known to

read/write data from/to the remote device

Nordic Semi NRF24 Direct Mode

 Direct Mode allows Software Defined Radio

 Additional pin on tranceiver module which toggles

all the time, allowing an MCU doing the raw data

processing (SDR)

 Only available as non-„Enhanced“ Shockburst with

speeds <1mbit/s

Radio Layer

 Raw (valid) Data

Setting up a sniffer

 Capture raw Enhanced Shockburst Traffic at

2mbit/sec

 Detect Preamble

 Get device addresses

 Decide wether it is a valid device

address/Enhanced Shockburst Frame or not

 Configure NRF24L01+ device via SPI using that

address

 But… how to capture the raw data…?

Alternative 2.4GHz transceiver

modules

 We have found a chip vendor in Taiwan who

produces a 2.4GHz transceiver with a „Direct

Mode“ pin

 Documentation was... Hmm… quite OK

Challenges

 Remote: NRF Module (TX) with 30ppm crystal

 Local: Amiccom A7125 (RX) with 10ppm crystal

 Asynchronous radio transmission at 2mbit/sec

Clock drift is a real problem when building

hardware tool with SDR

 500 ns (nano seconds) processing time per bit

 A 100 MHz CPU has 10 ns per clock cycle

Challenges (cont„d)

 We are looking for an unknown 5 Byte value (device
address)

 We know, an 8 bit preamble is located right before the
device address, and we know the value (0xAA)

 There is a well defined 9 bit Header right after the
device address – the first 6 bit are known to be less then
32

 We need to match <preamble>unknown<len <=
32>unknown .. Within a 2mbit/s noise stream

 Many false positives, still no way to verify a valid
address

500 ns

 Using a 100 MHz CPU we have 50 cycles during 500ns

 Having a 2 mbit/s timer interrupt for processing, we

have an IRQ handler overhead of approx. 20 cycles.

 30 CPU cycles left for:

 Read current value of A7125„s Direct Output pin

 Shift new bit in LSb of a 3x32 bit hardware CPU register

chain:

trash [reg 3] [reg 2] [reg 1] I/O bit input (new)

 Match Preamble in MSB in [reg 3]

30 CPU cycles left (cont„d)

Mask Enh. Shockburst Header length value (6-bit)

 Check wether value is 0, 8, 16 or 32 byte (most likely)

 If it matches, calculate very basic „hash“ value of

address in reg 3 and reg 2 – then increment

address match counter

 Check address match counter & decide wether address

might be valid or not

 Disable timer interrupt

30 CPU cycles left (cont„d)

 Disable A7125 module

 Enable NRF24L01+ module

 Set RX/TX address

 Act like a genuine device, using the valid Enhanced

Shockburst device address

 BTW: We might have used an FPGA or CPLD, but

this would have been too easy ;-) *

 * In fact we are currently working on this thing

Keykeriki V2 (beta)

 We built a hardware device, based on an NXP
LPC17xx ARM Cortex-M3 Microcontroler at 100
MHz with a Software Defined Radio Firmware

 We are using two different radio transceiver
modules

 Because we are lazy (SPI + FIFO is easier), less code
 less errors

 Because of probable legal issues

 And of course: Using the Nordic Semi chip is consuming
less power

Remember the vendor

responsibilities?

Microsoft Hardware

Payload Analysis

 To be able to successfully TX or RX/parse packets,

we need to understand how their protocol works

 Find the checksum algorithm (necessary for TX)

 Analyze content, find and understand cryptographic

algorithms

 Sequence IDs

 Etc

 Capture/Replay could be helpful

Microsoft Payload

 Keystrokes "a b

<space>"

 Recognizable Patterns

 First 4 Byte: Header:

 Device Class ID

 Packet Type ID

Model ID

 Unknown

0a 78 6 1 df 88 4b 0a c0 C9 88 8 0a c0 cd 57

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 78 6 1 DE 88 4b 0a c0 CD 88 8 0a c0 cd 52

0a 78 6 1 D9 88 4b 0a c0 C8 88 8 0a c0 cd 50

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 78 6 1 D8 88 4b 0a c0 CD 88 8 0a c0 cd 54

0a 78 6 1 DB 88 4b 0a c0 E1 88 8 0a c0 cd 7B

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 78 6 1 DA 88 4b 0a c0 CD 88 8 0a c0 cd 56

Packet Header

Sequence ID / Counter

Metakey Flags / Bitfield

HID code

Checksum

Microsoft Payload Encryption

C 0A 78 06 01 C2 98 76 0A C0 C8 98 35 0A C0 CD 5B

K CD 98 35 0A C0 CD 98 35 0A C0 CD

P 0A 78 06 01 0F 00 43 00 00 05 00 00 00 00 00

D
e
v
i
c
e

t
y
p
e

P
a
c
k
e
t

t
y
p
e

M
o
d
e
l

?

S
e
q
u
e
n
c
e

I
D

F
l
a
g
s
/
M
e
t
a

H
I
D

C
o
d
e

C
h
e
c
k
s
u
m

(Key-Down) Packet with device address
CD 98 35 0A C0

Microsoft Encryption & Checksum

Algorithm

ctx->const_down = ctx->const_up = ~ctx->address[1];

...

cksum = ctx->const_down;

for(i=0;i<4;i++) {

ctx->c_down[i] = ctx->p_down[i];

cksum ^= ctx->p_down[i];

}

for(i=4;i<15;i++) {

cksum ^= ctx->p_down[i];

ctx->c_down[i] = ctx->p_down[i] ^ ctx->secret[i % 5];

}

ctx->c_down[15] = cksum;

Microsoft Mouse

 Data (x/y) is not encrypted

 Mouse button press/idle/releases are also simply

HID codes

 Mouse has Device Class ID 0x08

Limited to Keyboards?

Obviously

Apartment Whispering?

Election / Voting?

Sports / Health

Dragos, see the issue?

What is going through your mind,

when you see terms like…

 Identification Keypad Module

 In/Out Module

 GSM Module

 Driver Identification Module

 Engine Blocking Module

 … all interconnected within cars, using proprietary

2.4GHz techniques..

Security / Safety

More targets…

 Just have a look at the Nordic Semiconductor „Press

Releases“ Webpage

 How many of the vendors, using the NRF24xxx

based transceivers in their devices, might implement

crypto in a proper way? Message authentication?

 How many of the vendors might use the NRF24xxx

crypto hardware in a proper way?

Back to the keyboard topic

Logitech Hardware

Logitech Payload Patterns

 8 Byte encrypted data

 4 Byte Sequence ID incremented

 1 Byte checksum

 The following checksum algorithm can be applied to

the payload: cksum = 0xFF

for n in len(data):

cksum -= data[n]

cksum += 1

Logitech AES 128 Secret Key

Exchange

TimeK
e
y
b
o
a
rd

R
e
c
e
iv

e
r

500us

X X X X

Logitech AES Key Derivation

 128 bit AES cipher needs block sizes of 16 Byte

 Only 8 Bytes are seemingly random or encrypted

 We assume, that AES128 is used in a mode, to

generate random data for an arbitrary stream-

cipher initialization.

 Even when pressing the same key again and again,

the 8 Byte ciphertext block differs completely

More Logitech…

 Keyboard Multimedia Keys are not encrypted

 Mouse data is not encrypted

Keykeriki V2 - DEMO

1. Scanning channels for valid

Enhanced Shockburst frames

2. Setup sniffer & NRF module

3. Perform Remote Command

Execution:

 <WINMETA-R>

 cmd.exe<return>

 calc.exe<return>

 46/2=

Risk & Impact

 Malware infection

 Remote key- and command injection (Drive-by

shooting)

 About 75 meters with default antenna

 Interception / Identity theft

 Where lies the burden of proof.....?

Whats Next?

 Fall 2010 2.4 GHz software defined radio

 Can support different protocols

 Can support different channels

 Can support different encodings

 Free & commercial version

 New hardware, using more powerful programmable

logic devices

 Analysis software, Wireshark, …

Questions?

Write us:

ths@dreamlab.net

max.moser@dreamlab.net

Infos, Software & Hardware Release:

http://www.remote-exploit.org/

Greetings & thx to:

n1ck, greg, eric, phil

