
Practical Exploitation
of

Modern Wireless Devices

Thorsten Schroeder

ths@dreamlab.net

Max Moser

max.moser@dreamlab.net

Warning!

 Verifying the security of someone else's data

transmission or injecting stuff without permission

could send you (or the other guy) to jail in most

countries :-)

What is this talk all about?

 Brief History

 Nordic Semiconductor Radio

 Practical Exploitation of…

 … other Mobile Devices

 Demo & Release – Remote Code Execution

History

Evolution

 Infrared (Not part of this talk)

 27 MHz Radio

 Bluetooth 2.4 GHz Radio

 Proprietary 2.4 GHz Radio

What is it?

 27 MHz frequency band (Citizen Band)

 Miller encoded radio signal

 Proprietary protocols

 Approx. 90 cm guaranteed max. working distance

 Low cost

 Battery demanding

What is wrong?

 Pure one way communication

 “Encryption” absent or only optionally available

 No protection against replay attacks

 No (Message) Authentication

Logitech Packets (27MHz)

a(down)

Keyb 1
000000100 10001001001 0000011110 1 00000

a(down)

Keyb 2
000000100 100111001111 0000011110 1 0001000

a(up)

Keyb 1
000000100 10001001001 0000011110 0 00000

a(up)

Keyb 2
000000100 100111001111 0000011110 0 0001000

b(down)

Keyb 1
000000100 10001001001 0000000101 1 0101

b(down)

Keyb 2
000000100 100111001111 0000000101 1 0100000

b(up)

Keyb 1
000000100 10001001001 0000000101 0 0101

b(up)

Keyb 2
000000100 100111001111 0000000101 0 0100000

? Keyboard ID Keystroke State ?

Tools Anyone?

 Radio transceiver + Taperecorder == replay

 Two identical receiver + Sync == FAIL

 Sniffing => Keykeriki V1

Keykeriki V1

 Released in May 2009 at PH-Neutral

 Capable of sniffing Microsoft, Siemens-Fujitsu,

Logitech, …

 SDCard for persistent Storage of data

 On-the-Fly Crypto Analysis /Cracking

Attack Limitation

 Full wavelength of 27 MHz is about 11 meters 

huge antennas

 Error correction not part of the design & not

implemented. Therefore limited range

 Injection is limited to replay because some minor bits

are still unknown within the packet format

Bluetooth Keyboards

What is it?

 Popular transmission technique in mobile area

 Security features are implemented within firmware

and not directly accessible from operating system

 Pairing process

 Encryption / Key exchange

 Fast frequency hopping makes sniffing more difficult

What is wrong?

 Bluetooth transmission modules are expensive ⇒
Expensive keyboards

 During pairing process all pre-requirements for a

successful PIN-cracking can be sniffed - “Simple

Pairing” should fix this

 Buggy implementations (Complexity)

 Overdesigned

Tools Anyone?

 GnuRadio

 Frontline FTE4BS™

 Flashing old Frontline FW on CSR Bluecore 3

dongles

Attack Limitation

 Sniffing is possible but kind of “unstable”

 All pre-requirements for a successful PIN-cracking

can only be sniffed during pairing

 Complex documentation

 GnuRadio or FTE4BS™ are expensive

 Rarely used

Proprietary 2.4 GHz

based Keyboards

What is it?

 Not Bluetooth, not Zigbee, not 802.11xyz

 Most devices operating with1 Mbit/sec some at

rates up to 2 Mbit/sec

 Nordic Semiconductor NRF24XXX family widely

used

 Compact form factor (e.g. 2.4 GHz antenna, small

IC devices, …)

 Faster, less TX time  less power consumption

Vendor Specific Responsibilities

 Any radio based keyboard vendor is responsible

for:

 Computer System Protection

 Authentication

 Data Protection & Integrity

 USB receiver is single line of defense (in case of

keyboards for example)

Proprietary 2.4 GHz

based Devices

Nordic Semi NRF24xxx

(Source: Nordic Semiconductor)

Enhanced Shockburst™

 How does it work?

 Nordic Multiceiver concept

 Multiple RX data pipes

 One channel at a time

 Dynamic Payload Len

Preamble

1 Byte

Address

3-5 Byte

Packet

Control

Field

9 bit

Payload

0-32 Byte

CRC

1-2

Byte

Packet Control Field

6 bit Payload Length

2 bit Sequence / Packet ID

1 bit Disable Auto ACK

Raw Shockburst Processing

 Difficulties

 Speed (2 Mbit/s is fast!)

 Auto-Ack and Retransmission Features vs.1 Mbit

solutions

 Direct Baseband Signal Access / Interface

How NRF24xxx works

 Detect valid Enhanced Shockburst Frame:

 8 bit preamble (0xAA or 0x55)

 3-5 byte device address

 CRC (if enabled) must match

 Otherwise it is considered being noise

NRF24L01+ Interface

 Config and Data Transmission via SPI (Serial

Peripheral Interface) using FIFO buffers

 There is no way to access radio layer directly

 Target system„s device address must be known to

read/write data from/to the remote device

Nordic Semi NRF24 Direct Mode

 Direct Mode allows Software Defined Radio

 Additional pin on tranceiver module which toggles

all the time, allowing an MCU doing the raw data

processing (SDR)

 Only available as non-„Enhanced“ Shockburst with

speeds <1mbit/s

Radio Layer

 Raw (valid) Data

Setting up a sniffer

 Capture raw Enhanced Shockburst Traffic at

2mbit/sec

 Detect Preamble

 Get device addresses

 Decide wether it is a valid device

address/Enhanced Shockburst Frame or not

 Configure NRF24L01+ device via SPI using that

address

 But… how to capture the raw data…?

Alternative 2.4GHz transceiver

modules

 We have found a chip vendor in Taiwan who

produces a 2.4GHz transceiver with a „Direct

Mode“ pin

 Documentation was... Hmm… quite OK

Challenges

 Remote: NRF Module (TX) with 30ppm crystal

 Local: Amiccom A7125 (RX) with 10ppm crystal

 Asynchronous radio transmission at 2mbit/sec 

Clock drift is a real problem when building

hardware tool with SDR

 500 ns (nano seconds) processing time per bit

 A 100 MHz CPU has 10 ns per clock cycle

Challenges (cont„d)

 We are looking for an unknown 5 Byte value (device
address)

 We know, an 8 bit preamble is located right before the
device address, and we know the value (0xAA)

 There is a well defined 9 bit Header right after the
device address – the first 6 bit are known to be less then
32

 We need to match <preamble>unknown<len <=
32>unknown .. Within a 2mbit/s noise stream

 Many false positives, still no way to verify a valid
address

500 ns

 Using a 100 MHz CPU we have 50 cycles during 500ns

 Having a 2 mbit/s timer interrupt for processing, we

have an IRQ handler overhead of approx. 20 cycles.

 30 CPU cycles left for:

 Read current value of A7125„s Direct Output pin

 Shift new bit in LSb of a 3x32 bit hardware CPU register

chain:

trash  [reg 3]  [reg 2]  [reg 1]  I/O bit input (new)

 Match Preamble in MSB in [reg 3]

30 CPU cycles left (cont„d)

Mask Enh. Shockburst Header length value (6-bit)

 Check wether value is 0, 8, 16 or 32 byte (most likely)

 If it matches, calculate very basic „hash“ value of

address in reg 3 and reg 2 – then increment

address match counter

 Check address match counter & decide wether address

might be valid or not

 Disable timer interrupt

30 CPU cycles left (cont„d)

 Disable A7125 module

 Enable NRF24L01+ module

 Set RX/TX address

 Act like a genuine device, using the valid Enhanced

Shockburst device address

 BTW: We might have used an FPGA or CPLD, but

this would have been too easy ;-) *

 * In fact we are currently working on this thing

Keykeriki V2 (beta)

 We built a hardware device, based on an NXP
LPC17xx ARM Cortex-M3 Microcontroler at 100
MHz with a Software Defined Radio Firmware

 We are using two different radio transceiver
modules

 Because we are lazy (SPI + FIFO is easier), less code
 less errors

 Because of probable legal issues

 And of course: Using the Nordic Semi chip is consuming
less power

Remember the vendor

responsibilities?

Microsoft Hardware

Payload Analysis

 To be able to successfully TX or RX/parse packets,

we need to understand how their protocol works

 Find the checksum algorithm (necessary for TX)

 Analyze content, find and understand cryptographic

algorithms

 Sequence IDs

 Etc

 Capture/Replay could be helpful

Microsoft Payload

 Keystrokes "a b

<space>"

 Recognizable Patterns

 First 4 Byte: Header:

 Device Class ID

 Packet Type ID

Model ID

 Unknown

0a 78 6 1 df 88 4b 0a c0 C9 88 8 0a c0 cd 57

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 38 6 1 df 88 8 d2

0a 78 6 1 DE 88 4b 0a c0 CD 88 8 0a c0 cd 52

0a 78 6 1 D9 88 4b 0a c0 C8 88 8 0a c0 cd 50

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 38 6 1 d9 88 8 d4

0a 78 6 1 D8 88 4b 0a c0 CD 88 8 0a c0 cd 54

0a 78 6 1 DB 88 4b 0a c0 E1 88 8 0a c0 cd 7B

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 38 6 1 dB 88 8 d6

0a 78 6 1 DA 88 4b 0a c0 CD 88 8 0a c0 cd 56

Packet Header

Sequence ID / Counter

Metakey Flags / Bitfield

HID code

Checksum

Microsoft Payload Encryption

C 0A 78 06 01 C2 98 76 0A C0 C8 98 35 0A C0 CD 5B

K CD 98 35 0A C0 CD 98 35 0A C0 CD

P 0A 78 06 01 0F 00 43 00 00 05 00 00 00 00 00

D
e
v
i
c
e

t
y
p
e

P
a
c
k
e
t

t
y
p
e

M
o
d
e
l

?

S
e
q
u
e
n
c
e

I
D

F
l
a
g
s
/
M
e
t
a

H
I
D

C
o
d
e

C
h
e
c
k
s
u
m

(Key-Down) Packet with device address
CD 98 35 0A C0

Microsoft Encryption & Checksum

Algorithm

ctx->const_down = ctx->const_up = ~ctx->address[1];

...

cksum = ctx->const_down;

for(i=0;i<4;i++) {

ctx->c_down[i] = ctx->p_down[i];

cksum ^= ctx->p_down[i];

}

for(i=4;i<15;i++) {

cksum ^= ctx->p_down[i];

ctx->c_down[i] = ctx->p_down[i] ^ ctx->secret[i % 5];

}

ctx->c_down[15] = cksum;

Microsoft Mouse

 Data (x/y) is not encrypted

 Mouse button press/idle/releases are also simply

HID codes

 Mouse has Device Class ID 0x08

Limited to Keyboards?

Obviously

Apartment Whispering?

Election / Voting?

Sports / Health

Dragos, see the issue?

What is going through your mind,

when you see terms like…

 Identification Keypad Module

 In/Out Module

 GSM Module

 Driver Identification Module

 Engine Blocking Module

 … all interconnected within cars, using proprietary

2.4GHz techniques..

Security / Safety

More targets…

 Just have a look at the Nordic Semiconductor „Press

Releases“ Webpage

 How many of the vendors, using the NRF24xxx

based transceivers in their devices, might implement

crypto in a proper way? Message authentication?

 How many of the vendors might use the NRF24xxx

crypto hardware in a proper way?

Back to the keyboard topic

Logitech Hardware

Logitech Payload Patterns

 8 Byte encrypted data

 4 Byte Sequence ID incremented

 1 Byte checksum

 The following checksum algorithm can be applied to

the payload: cksum = 0xFF

for n in len(data):

cksum -= data[n]

cksum += 1

Logitech AES 128 Secret Key

Exchange

TimeK
e
y
b
o
a
rd

R
e
c
e
iv

e
r

500us

X X X X

Logitech AES Key Derivation

 128 bit AES cipher needs block sizes of 16 Byte

 Only 8 Bytes are seemingly random or encrypted

 We assume, that AES128 is used in a mode, to

generate random data for an arbitrary stream-

cipher initialization.

 Even when pressing the same key again and again,

the 8 Byte ciphertext block differs completely

More Logitech…

 Keyboard Multimedia Keys are not encrypted

 Mouse data is not encrypted

Keykeriki V2 - DEMO

1. Scanning channels for valid

Enhanced Shockburst frames

2. Setup sniffer & NRF module

3. Perform Remote Command

Execution:

 <WINMETA-R>

 cmd.exe<return>

 calc.exe<return>

 46/2=

Risk & Impact

 Malware infection

 Remote key- and command injection (Drive-by

shooting)

 About 75 meters with default antenna

 Interception / Identity theft

 Where lies the burden of proof.....?

Whats Next?

 Fall 2010 2.4 GHz software defined radio

 Can support different protocols

 Can support different channels

 Can support different encodings

 Free & commercial version

 New hardware, using more powerful programmable

logic devices

 Analysis software, Wireshark, …

Questions?

Write us:

ths@dreamlab.net

max.moser@dreamlab.net

Infos, Software & Hardware Release:

http://www.remote-exploit.org/

Greetings & thx to:

n1ck, greg, eric, phil

