
Busting The Bluetooth® Myth – Getting RAW Access
aka “Transforming a consumer Bluetooth® Dongle into a Bluetooth® Sniffer”

Max Moser
http://www.remote-exploit.org

Introduction
During the last year, rumours had come to my
attention that apparently it is possible to
transform a standard 30USD Bluetooth®
dongle into a full-blown Bluetooth® sniffer.
Thinking you absolutely need Hardware to be
able to hop 79 channels 1600 times a second I
was rather suspicious about these claims.

This paper is the result of my research into this
area, answering the question whether it is
possible or not.

Analyzing Drivers
I used 4 different dongles during my tests, and
these used the very same chipset from CSR.
However I noted that the features they offer
were different and as such assumed that it
must be the firmware that offers most of
them.

For an overview about what is actually
required to promiscuously sniff Bluetooth® I
downloaded commercial software that is freely
available to everyone and inspected the files
that come with the packages. Within the INI1
files I stumbled across drivers for a chip made
by CSR (Cambridge Silicon Radio). In a
specific section there are all the devices listed
including their unique USB® vendor ID (VID)
and product identifier (PID).

A regular CSR BlueCore2 device has the value:

"USB\VID_0A12&PID_0001"

By further analyzing the files available in the
commercial Bluetooth® sniffer package, I
recognized that the driver used within that
package identifies itself as:

"USB\VID_0A12&PID_0002"

The difference being only the digit at the end
of the VID. I now have the VID the commercial
sniffing tool seems to be expecting.

1 http://en.wikipedia.org/wiki/INI_file
2 http://www.csr.com/products/bcrange.htm

Analyzing Other Content
Within the installation directory of the
unnamed commercial Sniffer package, I
spotted .dfu3 files which appeared to be some
sort of firmware files.

Finding Useful Target Dongles
After finding references to CSR driver/chipsets
in the installation package I goggled for CSR
based Bluetooth® dongles.
It is not that easy to find one which is for sure
CSR based but eventually I found a few and
purchased them.

Hint : When you insert a Bluetooth® dongle
into your linux box, you can use "lsusb" or
"usbview" to show all connected usb devices. I
was supprised that 2 of my 4 dongles are
showing me a familiar value of:

0xa12:0x0001 Cambridge Silicon Radio

Analyzing CSR Chipset And Its Abilities
By searching through the CSR website for
more information I discovered a lot about the
Implementation of the various Bluetooth®
features in their chipsets, and I recognized
that the chip has different “stores” (Memory).

I suddenly remembered a Bluez tool called
btaddr which can change a Bluetooth® USB
dongle BTaddress, so I wondered whether the
ProductID can be changed using the same or
similar techniques.

Soon I realised that by using the tool bccmd
from the bluez CVS tree, I can completely read
and partially write to the dongles different
storage areas, including the areas where the
Bluetooth® vendor and product id are stored!

I gave it a try and successfully modified my
PSF store to hold now the desired values of:

0xa12:0x0002

3
http://acronyms.thefreedictionary.com/Device+Fir
mware+Upgrade

Installing The Drivers In Windows
Using my modified dongle I tried to install the
drivers supplied by the commercial software's
viewer version. And it did work! The drivers
recognized the dongle as a genuine part of the
sniffer product package.

Flashing The Dongle With The
Commercial Firmware
Wondering whether there is a way to upload
the dfu files I found in the installation package
onto the dongle, I came across software called
dfutool, also part of the Bluez utilities. I tried
to flash the commercial firmware onto the stick
and guess what.... no errors... I was shocked.
It seemed like the stick is now flashed with
their firmware version.

I re-inserted the stick in my Linux computer
and did see RAW as feature within my
hciconfig output, in addition I see the RX and
TX number of bytes rising.

So now we have an exact copy of the
commercial hardware sniffer, with the correct
firmware, correct vendor and product ID. One
question remains “Will it sniff?”.

Luckily I was able to find a person that owns a
licensed version of the sniffer and finally was
able to test it.

I found out that prior to using the dongle I
have to configure it with their configuration
tool. This was not as easy as planed, but after
changing the MAC address of my modified
dongle to the same value as the licensed one,
it was working as expected.

Conclusion
 Most stuff is not done in hardware but

software, that was a widely spread myth
 The price is not a hurdle for Black hats
 It should be possible to code a Linux

sniffer

Resume
I like to state here very clear, that I did this all
for educational research purposes and am
quite shocked that this all was possible. It
seems that the rumours are true and sniffing
Bluetooth® is not a matter of expensive
hardware, but of proprietary firmware and
software.

This means that the Bluetooth® is much more
vulnerable to sniffing than expected for
months and that this security through
obscurity approach might have opened the
gates for the Black hats discovering holes
before we do.

About the Author
Max Moser is the founder of remote-exploit.org
and works currently for Dreamlab Technologies
Ltd. as Security Analyst and Tester.

